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Qualitative Results on MPII Dataset

Quantitative Results on Human3.6M Dataset
Directions Discussion Eating Greeting Phoning Photo Posing Purchases

Tekin et al. [2] 85.03 108.79 84.38 98.94 119.39 95.65 98.49 93.77
Zhou et al. [3] 87.36 109.31 87.05 103.16 116.18 143.32 106.88 99.78
Sanzari et al. [4] 48.82 56.31 95.98 84.78 96.47 105.58 66.30 107.41

Ours - Single PPCA Model 68.55 78.27 77.22 89.05 91.63 110.05 74.92 83.71
Ours - Mixture PPCA Model 64.98 73.47 76.82 86.43 86.28 110.67 68.93 74.79

Sitting Sitting Down Smoking Waiting Walk Dog Walking Walk Together Average

Tekin et al. [2] 73.76 170.4 85.08 116.91 113.72 62.08 94.83 100.08
Zhou et al. [3] 124.52 199.23 107.42 118.09 114.23 79.39 97.70 113.01
Sanzari et al. [4] 116.89 129.63 97.84 65.94 130.46 92.58 102.21 93.15

Ours - Single PPCA Model 115.94 185.72 88.25 88.73 92.37 76.48 77.95 92.96
Ours - Mixture PPCA Model 110.19 173.91 84.95 85.78 86.26 71.36 73.14 88.39

3D error (mm) Protocol #2

Yasin et al. [5] 108.3
Rogez et al. [6] 88.1
Ours 70.7

3D error (mm) Protocol #3

Bogo et al. [7] 82.3
Ours 70.7

2D pixel error
Zhou et al. [3] 10.85

Trained CPM [8] architecture 10.04
Ours using 3D refinement 9.47
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Training the Probabilistic 3D Human Pose Model
First step: aligning the data
We seek the optimal rotations for each pose such that after rotating the poses
they are closely approximated by a low-rank compact Gaussian distribution.
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Second step: train a mixture of PPCA models
Architecture of Each Stage

1. From image to belief maps
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2. From belief maps to 2D pose

3. From 2D to 3D pose

4. From 3D back to 2D

5. Generate projected belief maps

followed by convolution with Gaussian filter

6. Fusion

weights learned in the end-to-end learning

Problem: 3D Human Pose Estimation from a Single Image

RGB Image

2 independent
sources of training data

INPUT OUTPUT
2D pose 3D pose

No temporal information 2D pose annotations 3D mocap
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End-to-end Architecture
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The accuracy of both 2D and 3D landmark locations improves progressively
through the stages.
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