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Our Approach EvaluationGoal

Carstens AG5011 
o Sample Rate: 250 Hz 
o Capture Error < 1mm 
o 10 sensors on tongue 

and lips 
o 3 sensors for bite plane

Speech-to-Tongue Prediction Rig Fitting
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Data available for download at https://salmedina.github.io/tongue-anim

Conclusions 
o Our inner-mouth mocap dataset enables the training of data-driven models 
o Deep Learning audio representations outperform traditional methods for speech-animation 
o Simple-RNN based articulation decoders generalize across gender, age, and prosody 
o Limited lip animation due to the sparsity of the sensors

EMA Tongue Motion Dataset

EMA 
Sensor

Placement

TD Tongue Dorsum
TB Tongue Blade
BR Tongue Blade Right
BL Tongue Blade Left
TT Tongue Tip
UL Upper Lip
LC Right Lip Corner
LL Lower Lip
LI Jaw, medial incisors
LJ Jaw, canine & first premolar

Simple motion Complex motion

We captured the first large scale electromagnetic 
articulography (EMA) tongue dataset with parasagittal 
sensors for animation purposes. 

We first estimate tongue landmark positions from speech through an auto-encoder model, and then 
solve for rig parameters frame by frame to animate a character. 

Animate the tongue and jaw from only speech signal to add 
realism to facial animations.  
Accurately animating the tongue is difficult since: 
o Performance capture is not reliable as tongue and teeth are 

partially visible. 
o Manually animating the tongue is nearly impossible.

We match the predicted landmark positions with 
their corresponding points on the mesh by fitting 
the rig using L-BFGS. We add symmetry 
constraints on the jaw and lips.

Our method produces realistic tongue animations due to low error inner-mouth pose estimation. 

Animations produced from our method are 
preferred over a no tongue or mismatched 
animation, and confused with the GT.
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We placed 5 sensors on the tongue, 2 on the jaw and 3 on the lips.

Sensor Placement

We evaluate combinations of audio feature 
encoders and articulation decoders.

Tongue motions with more complexity are not 
modeled as accurately.

Experimental Results. Error is temporal mean MSE [mm]. Landmark Prediction Error [mm]

Our best results combine Wav2Vec-C features with a bidirectional 5-layered GRU.

Total samples: 2160 
      One English speaker 
      720 Harvard Sentences 
      1440 TIMIT 
      2.55 hours

Phones MFCC DS2 W2V-Z W2V-C

Audio Features Visualization
“Orange juice tastes funny after toothpaste”


