

Problem description

From egocentric input RGB image to 3D joint positions

Camera setup

of person wearin

Challenges: self-occlusion and fisheye camera distortion

Existing camera setup for egocentric 3D human pose estimation

EgoCap [38]

👅 Dual fisheye camera system with 2 cameras mounted approx. 15 cm away from the face

Mo2Cap2 [56]

Monocular system with camera mounted on a baseball hat.

xR-EgoPose synthetic dataset

Frame quality comparison with mo2cap2 dataset

- Unrealistic lighting
- Poor image quality
- Unrealistic character textures

- photo-realistic dataset • 46 characters
- colors and textures

- 23 female characters • 23 male characters 4 body specializations • 7 skin colors plus variations • 14 clothing items rendered with different • Train-set: 252.000 frames • Test-set: 115.000 frames • Validation-set: 16.000 frames • with a total of 64 different actions

- 383.000 frames • 9 broad action categories
- 5 passes (1024 x 1024)
- RGB
- Depth
- Normals
- Body Segmentation
- Pixel world position

xR-EgoPose: Egocentric 3D Human Pose from an HMD Camera 🔺 🗌 💽 Denis Tome^{1,2} Patrick Peluse¹ Lourdes Agapito² Hernan Badino^{*}

Architecture description

- Severe self-occlusion
- Strong perspective distortion

Ours

 Diminishing pixel density for lower body joints

n the VR goggles

Novel **dual-branch** autoencoder architecture, trainable in a **semi-supervised** manner

ortion								
inishing pixel density	$L = \widehat{\mathbf{H}\mathbf{M}} - \mathbf{H}\mathbf{M}^{gt} ^2 + \lambda_P(\hat{\mathbf{P}} - \mathbf{P}^{gt} ^2 + \lambda_\theta \sum_{l=1}^{L} \frac{1}{ \mathbf{P} ^2} + \lambda_\theta \sum_{l=1}^$							
over body joints	1. Single-branch learning							
	L = 2D Loss + 3D Loss							
	2. Dual-branch learning							
Ours	L = 2D Loss + 3D Loss + HM Loss							
Product oriented solution with fisheye	3. Weakly supervised learning							
camera embedded in the VR goggles	L = 2D Loss + HM Loss							

Dual vs. single branch autoencoder

Single-branch latent space distribution

ENCODEF

Results on xR-EgoPose

		-0		Lower				Upper		
Approach	Gaming	Gesticulating	Greeting	Stretching	Patting	Reacting	Talking	Stretching	Walking	Error (mm)
Martinez [27]	109.6	105.4	119.3	125.8	93.0	119.7	111.1	124.5	130.5	122.1
Ours - single branch	138.3	108.5	100.3	133.3	117.8	175.6	93.5	129.0	131.9	130.4
Ours - dual branch	56.0	50.2	44.6	51.1	59.4	60.8	43.9	53.9	57.7	58.2

Results by Martinez et al. [27] refer to the model trained entirely on xR-EgoPose dataset. Using the second branch, **only at training time**, brings over 55% improvement compared to the single branch architecture.

 $\frac{\mathbf{P}_{l} \cdot \dot{\mathbf{P}}_{l}}{\mathbf{P}_{l} || * || \hat{\mathbf{P}}_{l} ||} + \lambda_{L} \sum_{l}^{L} || \mathbf{P}_{l} - \hat{\mathbf{P}}_{l} ||) + \lambda_{\widetilde{hm}} || \mathbf{\widetilde{HM}} - \mathbf{\widehat{HM}} |^{2}$

- Strong supervision
- Uncertainty information not encoded
- Strong supervision
- Encodes uncertainty of predicted heatmaps
- Weak supervision
- Encodes uncertainty of predicted heatmaps

Dual-branch latent space distribution

Quantitative model evaluation

Human3.6M dataset

Approach	Chen	Moreno	Tome	Zhou	Martinez	Kanazawa	Sun	Fang	Ours	Sun
Error (mm)	82.7	76.5	70.7	55.3	47.7	58.8	48.3	45.7	45.2	40.6

Evaluation on Human3.6M [19, 7] dataset using evaluation protocol 2 with our novel dual-branch autoencoder architecture

Moleanl datacet

MOZCapz Galasel					
Approach	Indoor dataset error (mm)	Outdoor dataset error (mm)			
3DV'17 [28]	76.28	94.46			
VCNet [29]	97.85	113.75			
Xu [56]	61.40	80.64			
Ours	48.16	60.19			

Performance comparison of our model on the mo2cap2 egocentric dataset. Our model has been trained entirely on the mo2cap2 training set without any additional source. Our approach has over 25% improvement on both indoor and outdoor test sets.

Qualitative evaluation

Acknowledgement

greement No 643950.

7] C. Ionescu, F. Li. Latent structured models for human pose estimation. In Interna-tional Conference on Computer Vision, 2011 19] C. Ionescu, D. Papava, V. Olaru, and C. Sminchisescu. Human 3.6m: Large scale datasets and predic-tive methods for 3d human sensing in natural environments. IEEE transactions on pattern analysis and machine intelligence, 2014 7] J. Martinez, R. Hossain, J. Romero, and J. Little. A simple yet effective baseline for 3d human pose estimation. In Proceedings of the International Conference on Computer Vision, 2017 [38] H. Rhodin, C. Richardt, D. Casas, E. Insafutdinov, M. Shafiei, H. Seidel, B. Schiele, and C. Theobalt. Egocap: egocentric marker-less mo-tion capture with two fisheye cameras. ACM Transactions on Graphics, 2016 [56] W. Xu, A. Chatterjee, M. Zollhoefer, H. Rhodin, P. Fua, H. Seidel, and C. Theobalt. Mo2Cap2 : Real-time mobile 3d motion capture with a cap-mounted fisheye camera. IEEE Transactions on Visualization and Computer Graphics

Weakly supervised training

xR-EgoPose training data Error (mm)

50 %	50 %	68.04
50 %	100 %	63.98

Human3.6M training data

Datasets	Error (mm)
H3.6M	67.9
H3.6M + COCO + MPII	53.4

Due to the architecture definition, the model can be trained relying also on existing datasets or augmenting only some labels with better performance results.

This work was partly funded by the SecondHands project, from the European Union's Horizon 2020 Research and Innovation programme under grant