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Problem description

From egocentric input RGB image to 3D joint positions

Camera setup Input Output
External view < . Single RGB image from 3D skeletal
% of person wearing ! l egocentric viewpoint. pose

VR goggles

self-occlusion and fisheye camera distortion

High pixel e
> | . density

Challenges:

Severe self-occlusion

Strong perspective
distortion

e Diminishing pixel density
for lower body joints

Low pixel
density

Occluded

EX|st|ng camera setup for egocentric 3D human pose estimation

EgoCap [38] Mo2Cap2 [56] Ours

Product oriented
solution with fisheye
camera embedded
in the VR goggles

Monocular system with
camera mounted on a
baseball hat.

@ Dual fisheye camera
system with 2 cameras
mounted approx. 15 cm
away from the face

xR-EgoPose synthetic dataset

e photo-realistic dataset
e 46 characters
e 23 female characters

23 male characters
4 body specializations
7 skin colors plus variations
14 clothing items rendered with different
colors and textures
e 383.000 frames
e Train-set: 252.000 frames
e Test-set: 115.000 frames
e Validation-set: 16.000 frames
e O broad action categories
e with a total of 64 different actions
e 5 passes (1024 x 1024)
e RGB
Depth
Normals
Body Segmentation
Pixel world position

e Unrealistic lighting
e Poor image quality
e Unrealistic character textures

Egocentric 3D Human Pose from an HMD Camera
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Quantitative model evaluation

Human3.6M dataset
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Architecture description

Dual-branch autoencoder architecture

Ours Sun

Image

Approach Moreno Tome Zhou Martinez Kanazawa Sun Fang

Fully
connected

Error (mm)  82.7 76.5 70.7 55.3 47.7 58.8 48.3 45.7 45.2 40.6
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2048 Evaluation on Human3.6M [ 19, 7] dataset using evaluation protocol 2 with our novel dual-branch autoencoder architecture

Mo2cap2 dataset Weakly supervised training
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Novel dual-branch autoencoder architecture, trainable in a semi-supervised manner 129
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LI > E
l Performance comparison of our model on the mo2cap2 H3.6M 67.9
1. Single-branch learning egocentric dataset. Our model has been trained entirely on H3.6M + COCO + MPII 53.4

the mo2cap2 training set without any additional source. Due to the architecture definition, the model can be trained

L = |2DLoss| + |3D Loss * Etr:onli S.‘;':t’e'f;f'f:q tion not encoded Our approach has over 25% improvement on both indoor relying also on existing datasets or augmenting only some labels
¢ VhEErtanty INTormation ROt ENCOAE and outdoor test sets. with better performance results.
2. Dual-branch learning I . . I .
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L= 2DLoss| + |[3DLoss| + g >Up , , ® Ground truth
e Encodes uncertainty of predicted heatmaps
3. Weakly supervised learning
7 — oD Loss .\ e Weak supervision
- e Encodes uncertainty of predicted heatmaps

Dual vs. smg\e branch autoencoder

Dual-branch
latent space distribution

Single-branch
latent space distribution

comparison
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Martinez [27] 109.6 105.4 119.3 125.8 93.0 119.7 111.1 124.5 130.5 122.1 \
Ours - single branch 1383 108.5 1003 1333 1178 1756 935 1290 1319 304 AC kn OWI e dge me nt
Ours - dual branch 560 502 A4.6 51.1 5O 4 60.8 439 539 57 7 58.2 This work was partly funded by the SecondHands project, from the European Union’s Horizon 2020 Research and Innovation programme under grant

agreement No 643950.
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Results by Martinez et al. [27] refer to the model trained entirely on xR-EgoPose dataset.
Using the second branch, only at training time, brings over 55% improvement compared to the single branch architecture.



