
Problem description
Camera setup

External view
of person wearing
VR goggles

Input

Single RGB image from
egocentric viewpoint.

Output

3D skeletal 
pose

From egocentric input RGB image to 3D joint positions

Challenges:  self-occlusion and fisheye camera distortion
•   Severe self-occlusion

•   Strong perspective
     distortion

•   Diminishing pixel density
     for lower body joints

Existing camera setup for egocentric 3D human pose estimation
EgoCap [38]

Dual fisheye camera
system with 2 cameras
mounted approx. 15 cm
away from the face

Mo2Cap2 [56]

Monocular system with
camera mounted on a
baseball hat.

Ours

Product oriented
solution with fisheye
camera embedded
in the VR goggles

xR-EgoPose synthetic dataset
•  photo-realistic dataset
•  46 characters
  •  23 female characters
  •  23 male characters
  •  4 body specializations 
  •  7 skin colors plus variations
  •  14 clothing items rendered with different
   colors and textures    
•  383.000 frames
  •  Train-set: 252.000 frames
  •  Test-set: 115.000 frames
  •  Validation-set: 16.000 frames 
•  9 broad action categories
  •  with a total of 64 different actions
•  5 passes (1024 x 1024) 
  •  RGB
  •  Depth
  •  Normals
  •  Body Segmentation
  •  Pixel world position

Frame quality comparison with mo2cap2 dataset
•  Unrealistic lighting
•  Poor image quality
•  Unrealistic character textures

3. Weakly supervised learning

Architecture description
Dual-branch autoencoder architecture
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Novel dual-branch autoencoder architecture, trainable in a semi-supervised manner

Dual vs. single branch autoencoder
Single-branch
latent space distribution

Dual-branch
latent space distribution

Results on xR-EgoPose
Approach Gaming Gesticulating Greeting

Lower
Stretching Patting Reacting Talking

Upper
Stretching Walking Error (mm)

Martinez [27]

Ours - single branch

Ours - dual branch

109.6 105.4 119.3 125.8 93.0 119.7 111.1 124.5 130.5 122.1

138.3 108.5 100.3 133.3 117.8 175.6 93.5 129.0 131.9 130.4

56.0 50.2 44.6 51.1 59.4 60.8 43.9 53.9 57.7 58.2

Results by Martinez et al. [27] refer to the model trained entirely on xR-EgoPose dataset.
Using the second branch, only at training time, brings over 55% improvement compared to the single branch architecture.

1. Single-branch learning

2. Dual-branch learning

||ĤM−HMgt||2 λh̃m||H̃M− ĤM|2λP (||P̂−Pgt||2 + λθ
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||Pl − P̂l||)L = + +

• Strong supervision
• Uncertainty information not encoded

L = 2D Loss 3D Loss+

• Strong supervision
• Encodes uncertainty of predicted heatmapsL = 2D Loss 3D Loss+ HM Loss+

• Weak supervision
• Encodes uncertainty of predicted heatmapsL = 2D Loss + HM Loss

Quantitative model evaluation
Approach Chen Moreno Tome Zhou Martinez Kanazawa Sun Fang Ours

Error (mm) 82.7 76.5 70.7 55.3 47.7  58.8 48.3 45.7 45.2 40.6

Sun

Evaluation on Human3.6M [19, 7] dataset using evaluation protocol 2 with our novel dual-branch autoencoder architecture

Qualitative evaluation

Human3.6M dataset

Performance comparison of our model on the mo2cap2
egocentric dataset. Our model has been trained entirely on
the mo2cap2 training set without any additional source.
Our approach has over 25% improvement on both indoor
and outdoor test sets. 

Approach
Indoor dataset

error (mm)

3DV’17 [28]

VCNet [29]

Xu [56]

76.28

97.85

61.40

Ours 48.16

Outdoor dataset
error (mm)

94.46

113.75

80.64

60.19

Due to the architecture definition, the model can be trained 
relying also on existing datasets or augmenting only some labels
with better performance results.

xR-EgoPose training data
3D

50 %
50 %

50 %
100 %

2D
68.04
63.98

Error (mm)

Human3.6M training data
Datasets

H3.6M
H3.6M + COCO + MPII

67.9
53.4

Error (mm)

Mo2cap2 dataset Weakly supervised training

Prediction
Ground truth
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