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We introduce a novel approach to solve the problem of
3D human pose estimation

from a single RGB image
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Our method reasons jointly about 2D oint estimation

and 3D pose reconstruction to improve both tasks.



Our approach

* First, we learn a probabilistic model of 3D human pose from
3D mocap data

2D landmarks orobabilistic
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This model lifts 2D joint positions (landmarks) into 3D



Our approach

e Next, we train a novel end-to-end multi-stage CNN for 2D

landmark estimation

Multi-stage CNN



Our approach

e Next, we train a novel end-to-end multi-stage CNN for 2D

landmark estimation

e Fach stage Iincludes a new layer based on our probabilistic 3D

pose model of human poses to enforce 3D pose constraints



Detalled architecture
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Feature 2D Joint

extraction prediction

belief maps

For each landmark, a 2D belief map is generated

This defines how confident the architecture is that a specific
landmark occurs at any given pixel (u,v) of the input image



Feature 2D Joint
extraction prediction

Our pre-learned probabilistic model
lifts 2D landmarks into 3D

K(\ and injects 3D pose information

Probabilistic 3D pose model 3D pose
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Belief maps are
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The 2D belief maps from each stage are used as input to the next stage
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The accuracy of the belief maps increases progressively
through the stages



Output

Belief maps
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End-to-end learning
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Our approach achieves state-of-the-art results
on the Human3.6M dataset

Directions Discussion  Eating Greeting Phoning  Photo Posing Purchases

LinKDE [14] 132.71 183.55 132.37 164.39 162.12  205.94 150.61 171.31
Lietal [1Y. - 136.88 96.94 124.74 - 168.68 - -

Tekin et al. [37] 102.39 158.52 87.95 126.83 118.37  185.02 114.69 107.61
Tekin et al. [3 1] - 129.06 91.43 121.68 - 162.17 -
Zhou et al. [44] 87.36 109.31 87.05 103.16 116.18  143.32 106.88 99.78
Sanzari et al. [27] 48.82 56.31 95.98 84.78 96.47 105.58 66.30 107.41

Ours - Single PPCA Model 68.55 78.27 77.22 89.05 91.63 110.05 74.92 83.71
Ours - Mixture PPCA Model  64.98 73.47 76.82 86.43 86.28 110.67 68.93 74.79

Sitting  Sitting Down Smoking Waiting Walk Dog Walking Walk Together Average

LinKDE [14] 151.57 243.03 162.14  170.69 177.13 96.60 127.88 162.14
Lietal [1Y - - - - 132.17 69.97 - -
Tekin et al. [37] 136.15 205.65 118.21 146.66 128.11 65.86 77.21 125.28
Tekin et al. [3 1] - - - - 130.53 63.75 - -
Zhou et al. [44] 124.52 199.23 107.42 118.09 114.23 79.39 97.70 113.01
Sanzari et al. [27] 116.89 129.63 97.84 65.94 130.46 92.58 102.21 93.15

Ours - Single PPCA Model 115.94 185.72 88.25 88.73 02.37 76.48 77.95 92.96
Ours - Mixture PPCA Model 110.19 173.91 84.95 85.78 86.26 71.36 73.14 88.39




Example results on the Human3.6M dataset




